4
11
2015
1

CQOI2015(BZOJ3933)Polynomial

 

用x = x - t代换题目所给的式子,再用二项式展开,再用-m替换一下,可以得到bm关于am的公式:

bm=nk=mCkmktkmak=nmi=0Cim+itiam+i有关ai的通项公式有点令我困惑,里面那个递推式用待定系数法能够解出来,然而加上取模之后我也不知道该怎么办,看了网上的题解,ai的通项公式是这个:

剩下的就没什么好说的了,关于高精度一直就想找一个大整数类的模板,今天看到PoPoQQQ的题解中用的那个操作非常的全,但是那个friend函数不知道干什么的。不过还是把代码贴上来:

#include<cstdlib>
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
#define mod 3389
typedef long long ll;
const ll power_10[] = {1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000};
struct BigInteger{
    #define BASE 1000000000ll
    long long num[2020];int cnt;
    BigInteger() {}
    BigInteger(long long _){
        memset(num,0,sizeof num);
        num[cnt=1]=_;
    }
    friend istream& operator >> (istream &_,BigInteger &x){
        static char s[3030];
        scanf("%s",s+1);
        int i,len=strlen(s+1);
        for(i=len;i;i--)
            x.num[(len-i)/9+1]+=(s[i]-'0')*power_10[(len-i)%9];
        x.cnt=len/9+1;
        return _;
    }
	BigInteger& operator += (const BigInteger &x){
        int i;
        cnt=max(cnt,x.cnt);
        for(i=1;i<=cnt;i++)
        {
            num[i]+=x.num[i];
            if(num[i]>=BASE)
                num[i]-=BASE,num[i+1]++;
        }
        if(num[cnt+1]) ++cnt;
        return *this;
    }
    friend BigInteger operator + (const BigInteger &x,const BigInteger &y){
        BigInteger re;
        re=x;re+=y;return re;
    }
    friend int operator - (const BigInteger &x,const BigInteger &y){
        int i;
        long long re=0;
        for(i=x.cnt;i;i--)
            (re*=BASE)+=x.num[i]-y.num[i];
        return re;
    }
    friend BigInteger operator - (const BigInteger &x,int y){
        BigInteger re;
        int i;
        re=x;re.num[1]-=y;
        for(i=1;re.num[i]<0;i++)
            re.num[i] +=BASE,re.num[i+1]--;
        while(!re.num[re.cnt])
            re.cnt--;
        return re;
    }
    friend BigInteger operator * (const BigInteger &x,const BigInteger &y){
        BigInteger re(0);
        int i,j;
        for(i=1;i<=x.cnt;i++)
            for(j=1;j<=y.cnt;j++)
            {
                re.num[i+j-1]+=x.num[i]*y.num[j];
                if(re.num[i+j-1]>=BASE)
                    re.num[i+j]+=re.num[i+j-1]/BASE,re.num[i+j-1]%=BASE;
            }
        re.cnt=x.cnt+y.cnt;
        if(!re.num[re.cnt])
            re.cnt--;
        return re;
    }
    BigInteger& operator *= (const BigInteger &x){
        return *this=*this*x;
    }
    BigInteger& operator /= (int x){
        int i;
        for(i=cnt;i;i--)
            num[i-1]+=(num[i]%x)*BASE,num[i]/=x;
        num[0]=0;
        if(!num[cnt])
            --cnt;
        return *this;
    }
    int operator % (int x) const{
        int i;
        long long re=0;
        for(i=cnt;i;i--)
            ((re*=BASE)+=num[i])%=x;
        return re;
    }
    friend ostream& operator << (ostream &_,BigInteger &x){
        int i;
        while( x.cnt>0 && !x.num[x.cnt] )
            --x.cnt;
        printf("%d",(int)x.num[x.cnt]);
        for(i=x.cnt-1;i>0;i--)
            printf("%09d",(int)x.num[i]);
        return _;
    }
}n,m,ans,k = 1,tp = 1;

inline int qpow(int a,int b){
	int ret = 1;
	while(b){
		if(b & 1)ret *= a,ret %= mod;
		a *= a, a %= mod;
		b >>= 1;
	}
	return (ret + mod) % mod;
}
inline int geta(BigInteger x){
	int power = x % 3388 ;
	return (209*qpow(1234,power) + 3181) % mod;
}

int main(){
	int tmp,t;
	cin >> n >> t >> m;
	tmp = n - m;
	for(int i = 0;i <= tmp; i++){
		if(i){
			k *= m + i,k /= i;
			tp *= t;
		}
		ans += k*tp*geta(m + i);
	}
	cout << ans << endl;
	return 0;
}

 

 

 

 

 

 

 

Category: 数学相关 | Tags: 数列 高精度 | Read Count: 1150
Callum Merrylees 说:
2019年4月02日 14:54

With this blog for the acceleration of the life in the matter and cases of the study will make it more exciting. As for the right copy of this numerical on the assignment writing services in australia have to depend for the polynomial terms.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter

Host by is-Programmer.com | Power by Chito 1.3.3 beta | Theme: Aeros 2.0 by TheBuckmaker.com